High-tech imaging uncovers precolonial Mexican manuscript hidden from view for 500 years

August 19, 2016

Researchers from the University of Oxford’s Bodleian Libraries and from universities in the Netherlands have used high-tech imaging to uncover the details of a rare Mexican codex dating from before the colonization of the Americas. The newly revealed codex, or book, has been hidden from view for almost 500 years, concealed beneath a layer of plaster and chalk on the back of a later manuscript known as the Codex Selden, which is housed at the Bodleian Libraries. Scientists have used hyperspectral imaging to reveal pictographic scenes from this remarkable document and have published their findings in the Journal of Archaeological Science: Reports. Read more

Wi-fi from lasers

August 15, 2016

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

While Wi-Fi and Bluetooth are now well established technologies, there are several advantages gained by shortening the wavelength of the electromagnetic waves used for transmitting information.

So-called visible-light communication (VLC) makes use of parts of the electromagnetic spectrum that are unregulated and is potentially more energy-efficient. VCL also offers a way to combine information transmission with illumination and display technologies–for example, using ceiling lights to provide internet connections to laptops. Read more

A new bio-ink for 3-D printing with stem cells

June 23, 2016

The new stem cell-containing bio ink allows 3D printing of living tissue, known as bio-printing.

The new bio-ink contains two different polymer components: a natural polymer extracted from seaweed, and a sacrificial synthetic polymer used in the medical industry, and both had a role to play.

The synthetic polymer causes the bio-ink to change from liquid to solid when the temperature is raised, and the seaweed polymer provides structural support when the cell nutrients are introduced. Read more

Teaching computers to understand human languages

May 9, 2016

Researchers at the University of Liverpool have developed a set of algorithms that will help teach computers to process and understand human languages.

Whilst mastering natural language is easy for humans, it is something that computers have not yet been able to achieve. Humans understand language through a variety of ways for example this might be through looking up it in a dictionary, or by associating it with words in the same sentence in a meaningful way.

The algorithms will enable a computer to act in much the same way as a human would when encountered with an unknown word. When the computer encounters a word it doesn’t recognise or understand, the algorithms mean it will look up the word in a dictionary (such as the WordNet), and tries to guess what other words should appear with this unknown word in the text. Read more

Commonly used strategy for website protection has flaws

April 12, 2016

Cloud-based security providers commonly use DNS redirection to protect customers’ websites. The success of this strategy depends on shielding the website’s original IP address. Computer scientists from KU Leuven, Belgium, and digital research centre iMinds have now revealed that the IP address can be retrieved in more than 70% of the cases. This means that the DNS redirection security mechanism can easily be bypassed.

Websites and online services increasingly have to deal with acts of cybercrime such as ‘distributed denial-of-service’ (DDoS) attacks: the site or service is deliberately bombarded with huge numbers of malicious communication requests from different computers so that it collapses.

“Website owners can protect themselves against cyberattacks by installing dedicated hardware,” says Thomas Vissers from the KU Leuven Department of Computer Science and iMinds. “Yet, this is typically too expensive and too complex for most of them. That’s why website owners often rely on the services offered by cloud-based security providers. One strategy these providers commonly use to protect websites includes diverting incoming web traffic via their own infrastructure, which is sufficiently robust to detect and absorb cyberattacks. However, the success of this strategy heavily depends on how well the website’s original IP address can be shielded. If that IP address can be retrieved, protection mechanisms can easily be bypassed.” Read more

Newly discovered organic nanowires leave manmade technologies in their dust

March 24, 2016

A microbial protein fiber discovered by a Michigan State University scientist transports charges at rates high enough to be applied in manmade nanotechnologies.

The discovery, featured in the current issue of Scientific Reports, describes the high-speed protein fiber produced by uranium-reducing Geobacter bacteria. The fibers are hair-like protein filaments called “pili” that have the unique property of transporting charges at speeds of 1 billion electrons per second. Read more

Outsourcing crystal growth to space

March 16, 2016

Sometimes, distance can lend a new perspective to a problem. For Japanese researchers studying protein crystal growth, that distance was 250 miles up — the altitude at which the International Space Station (ISS) orbits the Earth. To better isolate the growth of protein crystals from the effects of gravity, the group of Katsuo Tsukamoto in Tohoku University’s Department of Earth and Planetary Science in Sendai, Japan, and the Japan Aerospace Exploration Agency grew crystals in a specially-designed chamber onboard the ISS.

The researchers monitored the very slow growth and dissolution rate — approximately one centimeter per second of the crystals by laser interferometry. This was the first time the technique had been used onboard the ISS to measure the growth rate of the crystals at various temperatures. To observe this, Yamazaki and his colleagues developed unique growth cells suitable for long-term projects, for about six months.

“We are interested in the growth mechanisms of a space-grown protein crystal — a lysozyme crystal — as a model crystal to understand why space-grown crystals sometimes do show better quality than the Earth-grown crystals,” said Tomoya Yamazaki, a PhD student in Tsukamoto’s lab.

Tsukamoto and his colleagues, which includes collaborators at the Japan Aerospace Exploration Agency, Japan Space Forum, Olympus Optical Corporation, detail their elegant growth method this week in Review of Scientific Instruments, from AIP Publishing.

The experimental process, known as NanoStep, was performed in the Japanese Experimental Module (KIBO) of the International Space Station in 2012. Tsukamoto and his colleagues had previously measured the growth rates of protein crystals under simulated microgravity by using a Russian recoverable satellite and aircraft in parabolic flights.

The researchers took precise measurements of the growth rate of the lysozyme crystals versus their driving force, supersaturation – the natural logarithm of the protein’s concentration divided by its solubility — with measurements of the solution’s refractive index distribution obtained through interferometry. This also yielded crucial information about the growth mechanism.

The researchers opted to modify the supersaturation of the solution by increasing or decreasing the growth cell’s temperature, which can easily be done remotely. This took place over a range of 10 — 40 degrees Celsius, which necessitated building a closed growth cell to withstand the stresses caused by the thermal expansion of the growth solution.

The closed, cube-like growth cell was constructed out of quartz glasses with different thickness, an essential component for laser interferometry due to its high chemical and mechanical resistances with a protein seed crystal glued to the top of the sample holder. To relieve the thermal stress on the glass, the researchers attached tubes made out of an elastomer, low-moisture-permeability thermoelastic polymer. This was selected to mitigate evaporation of water in the crystal growth solution, which consisted of 30 or 35 mg/ml of lysozyme and 25 mg/ml sodium chloride in 50 mM sodium acetate buffer solution. They also employed a special spring tension system to reduce stress by keeping the gap between the glass cell and thermal control modules constant amid thermal expansion.

The growth cell could also be used to fine-tune the measurements of extremely small growth or dissolution rates of insoluble minerals on the order of 0.001 nanometers per second of insoluble minerals. For example, it could measure calcium carbonate crystals, where margins of error could become massive across a geological time scale – such as predicting the dissolution of clay minerals surrounding nuclear waste stored underground for 100,000 years.

While the researchers expected growth rates of the crystal solution to be slower because of the suppression of solution convection, the results instead showed an increased growth rate.

This may be due to the suppression of transport speed of impurity molecules with larger diameter to the growing crystal, as analyzed the growth rate versus supersaturation relations. This will appear in forthcoming papers.

Extended projects for the researchers using the same apparatus to test the growth of different crystals, such as glucose isomerase crystals, are currently in preparation.

World’s thinnest lens to revolutionize cameras

March 12, 2016

Scientists have created the world’s thinnest lens, one two-thousandth the thickness of a human hair, opening the door to flexible computer displays and a revolution in miniature cameras.

Lead researcher Dr Yuerui (Larry) Lu from The Australian National University (ANU) said the discovery hinged on the remarkable potential of the molybdenum disulphide crystal.

“This type of material is the perfect candidate for future flexible displays,” said Dr Lu, leader of Nano-Electro-Mechanical System (NEMS) Laboratory in the ANU Research School of Engineering.

“We will also be able to use arrays of micro lenses to mimic the compound eyes of insects.”

The 6.3-nanometre lens outshines previous ultra-thin flat lenses, made from 50-nanometre thick gold nano-bar arrays, known as a metamaterial.

“Molybdenum disulphide is an amazing crystal,” said Dr Lu

“It survives at high temperatures, is a lubricant, a good semiconductor and can emit photons too.

“The capability of manipulating the flow of light in atomic scale opens an exciting avenue towards unprecedented miniaturisation of optical components and the integration of advanced optical functionalities.”

Molybdenum disulphide is in a class of materials known as chalcogenide glasses that have flexible electronic characteristics that have made them popular for high-technology components.

Dr Lu’s team created their lens from a crystal 6.3-nanometres thick – 9 atomic layers – which they had peeled off a larger piece of molybdenum disulphide with sticky tape.

They then created a 10-micron radius lens, using a focussed ion beam to shave off the layers atom by atom, until they had the dome shape of the lens.

The team discovered that single layers of molybdenum disulphide, 0.7 nanometres thick, had remarkable optical properties, appearing to a light beam to be 50 times thicker, at 38 nanometres. This property, known as optical path length, determines the phase of the light and governs interference and diffraction of light as it propagates.

“At the beginning we couldn’t imagine why molybdenum disulphide had such surprising properties,” said Dr Lu.

Collaborator Assistant Professor Zongfu Yu at the University of Wisconsin, Madison, developed a simulation and showed that light was bouncing back and forth many times inside the high refractive index crystal layers before passing through.

Molybdenum disulphide crystal’s refractive index, the property that quantifies the strength of a material’s effect on light, has a high value of 5.5. For comparison, diamond, whose high refractive index causes its sparkle, is only 2.4, and water’s refractive index is 1.3.

This study is published in the Nature serial journal Light: Science and Applications.

Driverless cars could complicate energy savings and environmental benefits

February 26, 2016

Driverless vehicles could intensify car use, reducing or even eliminating promised energy savings and environmental benefits, a study led by a University of Leeds researcher has warned.

Development of autonomous driving systems has accelerated rapidly since the unveiling of Google’s driverless car in 2012, and energy efficiency due to improved traffic flow has been touted as one of the technology’s key advantages.

However, new research by scientists from the University of Leeds, University of Washington and Oak Ridge National Laboratory, published today in the journal Transportation Research Part A, says its actual impact may be complicated by how the technology changes our relationship with our cars. Read more

When machines can do any job as predicted, what will humans do?

February 15, 2016

Rice University computer scientist Moshe Vardi expects that within 30 years, machines will be capable of doing almost any job that a human can. In anticipation, he is asking his colleagues to consider the societal implications. Can the global economy adapt to greater than 50 percent unemployment? Will those out of work be content to live a life of leisure?

“We are approaching a time when machines will be able to outperform humans at almost any task,” Vardi said. “I believe that society needs to confront this question before it is upon us: If machines are capable of doing almost any work humans can do, what will humans do?”

Vardi will address the issue in an 8 a.m. Sunday presentation, “Smart Robots and Their Impact on Society,” at one of the world’s largest and most prestigious scientific meetings — the annual meeting of the American Association for the Advancement of Science in Washington, D.C.

“The question I want to put forward is, ‘Does the technology we are developing ultimately benefit mankind?'” Vardi said. He will present a body of evidence that suggests the pace of advancement in the field of artificial intelligence (AI) is increasing, even as existing robotic and AI technologies are eliminating a growing number of middle-class jobs and thereby driving up income inequality.

Vardi, a member of both the National Academy of Engineering and the National Academy of Science, is a Distinguished Service Professor and the Karen Ostrum George Professor of Computational Engineering at Rice, where he also directs Rice’s Ken Kennedy Institute for Information Technology. Since 2008 he has served as the editor-in-chief of Communications of the ACM, the flagship publication of the Association for Computing Machinery (ACM), one of the world’s largest computational professional societies.

Vardi said some people believe that future advances in automation will ultimately benefit humans, just as automation has benefited society since the dawn of the industrial age.

“A typical answer is that if machines will do all our work, we will be free to pursue leisure activities,” Vardi said. But even if the world economic system can be restructured to enable billions of people to live lives of leisure, Vardi questions whether it would benefit humanity.

“I do not find this a promising future, as I do not find the prospect of leisure-only life appealing. I believe that work is essential to human well-being,” he said.

“Humanity is about to face perhaps its greatest challenge ever, which is finding meaning in life after the end of ‘In the sweat of thy face shalt thou eat bread,'” Vardi said. “We need to rise to the occasion and meet this challenge” before human labor becomes obsolete, he said.

In addition to dual membership in the National Academies, Vardi is a Guggenheim fellow and a member of the American Academy of Arts and Sciences, the European Academy of Sciences and the Academia Europa. He is a fellow of the ACM, the American Association for Artificial Intelligence and the Institute for Electrical and Electronics Engineers (IEEE). His numerous honors include the Southeastern Universities Research Association’s 2013 Distinguished Scientist Award, the 2011 IEEE Computer Society Harry H. Goode Award, the 2008 ACM Presidential Award, the 2008 Blaise Pascal Medal for Computer Science by the European Academy of Sciences and the 2000 Goedel Prize for outstanding papers in the area of theoretical computer science.

Vardi joined Rice’s faculty in 1993. His research centers upon the application of logic to computer science, database systems, complexity theory, multi-agent systems and specification and verification of hardware and software. He is the author or co-author of more than 500 technical articles and of two books, “Reasoning About Knowledge” and “Finite Model Theory and Its Applications.”

« Previous PageNext Page »